SURVEYS

NUMERICAL SOLUTION OF HEAT AND MASS IMPULSE TRANSFER PROBLEMS*

W. Zwick UDC 536.24

1. TIntroduction. TFollowing the development of computational techniques, the numerical
solution of the heat, mass, and momentum transfer equations has acquired much interest in
many technical applications. In this connection, an important role is played by the theoret-
ical and experimental justification of the validity region of specific numerical models,
and their effectiveness is estimated for the study of various classes of problems.

The numerical solution of heat, mass, and momentum transfer problems can be separated
into several stages. The mathematical model is formulated at the first stage. In this case
the substantial physical features of the problem must be reflected properly, and its mathe-
matical statement must be formulated correctly, guaranteeing existence and uniqueness of the
solution, and stability of the equations. We note that stability of the equations of motion
with respect to perturbations of original data is often not guaranteed at large Reynolds num-
bers.

At later stages this mathematical model is approximated by a system of algebraic equa-
tions, and a method of solving them is selected, which can be realized on available computers
by means of standard or specially developed programming techniques. The numerical solution
then obtained must be verified and interpreted correctly, following which it can be used.

Since many stationary problems can be solved by means of established methods, in what
follows all problems are considered in the nonstationary statement in the time interval [0, T]
and the spatial region Q, having a boundary I'. The time coordinate is denoted by (€0, T/

For the sake of simplicity it is assumed that the spatial region has two dimensions, while
the radius-vector x€QUI' is given by the coordinates x = (x;, X,). Besides, it is assumed
that heat, mass, and momentum transfer is investigated in a Newtonian incompressible single-
phase medium, the effect of electromagnetic forces and radiation is not considered, and only
laminar flows are considered.

2. Basic Equations of Heat and Mass Impulse Transfer. The Navier—Stokes equation plays
the main role in momentum transfer problems. For nonisothermal flows it is coupled with
the heat transfer problems. For nonisothermal flows it is coupled with the heat transfer
equation, and in the general case with the diffusion equation as well. Since the latter
have an identical shape, without loss of generality the numerical methods can be illustrated
on the Boussinesq system of equations, including the heat and momentum transfer equations.

Denoting the velocity by v = (v, v,), the temperature by 8, and the pressure by p,
for the appropriately selected dimensionality the Boussinesq equations can be written in
the following form:

0— %A +v,D0 = f, (1)

U — WAV + 0Dy + Dip = 50 - g, (2)
Dp, =0,

A4 (3)

vhere k acquires the values 1 and 2, and the summation must be carried out over the subscript
2 from 1 to 2. Besides, we use here the notation [h::@/@m,A::Ddh,n==l/Re,w==1/(Re-PrL

71=0, Z;=Ri; where f and g are given sources of heat and external force. The dot over © and
vk denotes partial differentiation with respect to time, while Re, Pr, and Ri are, respective-
ly, the Reynolds, Prandtl, and Richardson numbers. The system includes the heat-transfer
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equations (1), Navier—Stokes (for Ri = 0) (2), and continuity (3).

In numerical studies, Egqs. {2) and (3) are often transformed to the form

© — NA® 4+ 9,00 = —Ri-D,0 4~ Dygy — Dygy. @0 = AW (4)
or
AW — qAAY - ;DAY ~ —Ri- D0 4 D,g, — D, ga, (5)
where ¥ is the stream function, v, = D,¥; v, = —D;¥, and w = Dy,v; — D;v, is the velocity vor-

tex function. In this case, the continuity equation (3) is satisfied identically.

To calculate the pressure p it is necessary to supplement relationship (2). Applying
it to the operator Dk, we obtain

Dkt“k e T}ADI{U}; ‘-{- UZDL'DILUIL '1L Dklelvk + Ap == Rl " Dze ’*3_ Dkgh (6)

Here it is necessary to sum over the subscript k going from 1 to 2. Requiring, in addition,
that the following condition be satisfied:

Dy, Dy + Ap =Ri-DB -+ Digr, Dutrlr =0, Ditrly=0-=0, (7)

then, due to Dkvk — nADkvk + vgDeDkvk = 0 in Q in the whole region QUTU for t 2 0, Dgvk = 0.
Therefore, the systems (2), (3) and (2), (7) become equivalent [1}. Furthermore, Egs. (1),
(2), and (7) are represented in the form of Boussinesq equations. The advantage of the lat-
ter is that a second-order equation is obtain for the pressure as well.

3. Initial and Boundary Conditions. The formulation of initial conditions is not dif~-
ficult, since one can often start from a state of rest v = 0 at the moment of time t = 0,
for which the temperature 8 has a known distribution.

As boundary conditions for the heat-transport equations one can assign either the tem-
perature (condition of the first kind), or its normal derivative (condition of the second
kind), or a combination of these quantities (condition of the third kind). The velocity com-
ponents are given for the equations mostly on the boundary. In this case, however, it is
necessary to guarantee satisfaction of the vanishing condition of the integral of the normal
velocity component along the boundary. 1In this case, the pressure p is uniquely determined
accurately within a constant term. If the pressure values are given on some portion of the
boundary I'p, then the boundary conditions for the velocity must vary in such a manner that
the condition Dkvk|rp = 0 [1-3] be satisfied.

On the solid boundaries I'f the flow regions usually satisfy the adhesion condition v|rf = 0.
On the boundary portions where the liquid flow into the region or away from it, assigning
boundary conditions for the velocity is more complicated and depends on the corresponding
statement of the problem. Still more complicated is the statement of boundary conditions on
the free surfaces and on the separation boundaries of phases on which boundary conditions
are derived from the jump relationships.

The conditions at infinity in flow problems are usually obtained by asymptotic consider-
ations. If symmetry lines are encountered in the flow region, then for computational regions
one can consider only part of the original region, assigning on the symmetry lines vanishing
conditions of the normal component and the normal derivative of the tangential velocity com-
ponent, as well as the normal derivative of the temperature.

4. Approximation Region and Time Interval. For numerical solution of analytic prob-
lems with assigned initial and boundary conditions they must be approximated by algebraic
equations. Truly, in isolated cases and when using Galerkin methods [4], for which the
Fourier coefficients of the unknown functions are determined and closed contour integration
is used, the approximation of the region Q and its boundary I' by discrete grid points is
not necessary. Inusing difference methods and the finite element method, the original region
is approximated by a system of discrete points. In this case, the smoothness of this ap-
proximation is substantially enhanced if the whole region is initially partitioned into ele-
mentary regions (elements), and then these elements are approximated by discrete points.

The method of this partitioning depends substantially on the shape of the original region,
and can be illustrated in detail on the example of a rectangle with sides parallel to the
coordinate axes.
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The rectangular region QUI' is partitioned into a system of (I — 1) x (J — 1) rectangu-
lar elements Rij (i=1, ..., I-1; j=1, ..., J— 1), whose sides are also parallel to
the coordinate axes. The vertices x;=/(xy;, x9)€QUD (i=1, .., [:j=1,..J) of these elements
then form a system of Q,UI'y, discrete points, by which is represented the region £,UT}, . The
internal discrete points can be written in the form

Q={Xy(t=2, ..., I—1, j=2,...,J—1)}
and the boundary

I‘h:{XiIUX,-JUX”-UX” (Lzl, ey I; ]22, ceey J~—1)}

In approximating boundary conditions of the second kind, an especially important role
is played by the boundary band [h:

T =T U{XsuUXim1 U XegUXmy (=2, ..., [—1;j=3,..., J—2)},

which consists of points of the boundary I't, and internal adjacent boundary points.

For a uniform partitioning with a step H = (h;, h,) the points xjj are represented in
the form X341 = X34 + hy, Xp354; = Xp3 t h,. Here h; and h, are the magnitudes of the parti-
tioning steps along the x; and x, axes. The point X;; = (x,;, X,;) is the left lower vertex
of the region.

'We also introduce a nonuniform partitioning with a step hii along x; and a step hzj
aleng X,. The coordinates of the discrete points Xjij can be represented in the form

x1i+1=x1,-+h1,-, x2j+1:x2j+h2j (l:]., ey [———1, ]:1, P J'—‘l)-

The same approach can also be used when the original region consists of several rectangular
regions. 1If, however, the boundary I' does not consist of segments parallel to the coordinate
axes, partitioning of the region QUI into rectangular elements becomes complicated. In
this case it is never possible to select a coordinate transformation for which the boundary
I' contains in the new coordinate system only segments parallel to the axes. A different,
more general approach consists of the fact that the region QUI' is decomposed into a finite
set of (finite) elements Ej (i = 1, 2, ...) (QUI'=UE:) of arbitrary shape.

2

For regions having a polygon shape it is convenient to use elements of triangular shape.
For a curvilinear edged region one introduces curvilinear triangular elements. For these
partitions one can select the triangle vertices as the system of discrete points QpUT'n={Xj;
(i=1, ..., i3 3 =1, ..., J)} approximating the region QUT. Similarly, one introduces
the concept of the step magnitude H = (h;, h,) or, respectively, Hij = (hyj, hzj)-

For several problem statements it is meaningful to consider for the approximation re-
gion QUT" not only constant, but also mobile grids [5] or a system of successive M grids
Qm | Tm Unzzl,___; M) [6]. 1In this case, QI' must be represented by a cruder grid, while
Qutl YT+t (m=1, ..., M—1). — by a sequence of more refined ones. The sequence of grids
can be selected by different methods. The simplest approach consists of that for a step
value Hmt!= (Wp+l, R3] , or, respectively, Hptl-=(hmt!, mpt!) for some grid QuiiyIm+!  we
obtain from the step H™=(h{, h}) , or, respectively, HJ} = (hT, hp) » grids gmypm by halv-
ing: Hmtl = Hm[2 or, respectively, HTH!= H7/2.

The time interval [0, T] of the (N + 1)-th discrete point #%€[0, T] (=0, 1, .., N; {:=0,
tN = T) is similarly approximated. For the uniform partitioning with step T we have the
ratio thp, =t + 1 (n=0, 1, ..., N - 1), while for the nonuniform partitioning with step
Tn we have tp4; = ty + 1p.

. 5. Approximation Fﬁnctions. The simplest method of approximating the function
fX)(x€QUT) by the grid functions /[4(Xy) (X;;€Q,UT,) 1is given by the equation
fr (Xap) = [ (Xas)- (8)

A different possibility of representing the analytic function f by means of a finite
number of values f = fjj consists of selecting for the latter weighted mean values of f or
moments

T = (F $a)/(1, i) (9)
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Here (f, ¢)::§[¢dx and Pi = Vi (x); x€QUL is a known weight function, vanishing for all

o
x¢U;; , where U;=QUT is a selected neighborhood of the point Xij. In isolated cases
it can coincide with the region QUT. These averaged values fij depend not only on the orig-
inal function f, but also on the neighborhood Uij and the weight function ¢ij, and can differ
strongly from the reference values f(Xij).

Another approach to approximation by an analytic function f consists of approximating
it by other functions fI = f1(x), defined in terms of a finite set of coefficients apv (p =
I, oo, I3 v=1, ..., I):

fr=" Gy (10)
B, ¥

Here @uw=0uw(x) is a system of known functions of coordinates, while the subscripts u and
v imply summation from 1 to I and from 1 to J, respectively. The coefficients ayy are deter-
mined either from the system of equations

Zanv(PuV(Xii):f(Xij:‘: i=1, ..., I; j:1, s (11)
n, v
or
2 auv(q)ww wij):(fv P =1, ..., j= | SRR (12)
0, v

Equation (10) is an interpolation polynomial, which in the case (11) has the same values
at the points Xjj, while in the case (12) these are the same weighted mean values as for the
function f. For unique determination of the coefficients apy it is necessary and sufficient
that the determinant of the matrix ¢u{x;) , or, respectively, of the matrix (gw, ¥:), be
nonvanishing.

If the functions @w and ¢ij are orthonormal, then it follows from Eg. (12) that
Quy = (fi lpuv)' (13)

If this scalar product (integral) is expressed by means of the quadrature equation

[ fdx =3 vuf (Xu),

Q i f

where Yvij are selected coefficients of the corresponding problem, substituted into Eq. (13),
then

Qo == E Visl (%:3) $v (225)-
v -

Substituting this expression further into Eq. (10), we obtain

i Ef(xij) @y, (14)
i,
where @ =®;(x) =7y % Puv () Py (Xis).

Py
[T

Expression (14) is an interpolation polynomial, in which the coefficients are the refer-
ence values of the original function f. If the coordinate and weight functions ®w and Ypv
or the function ¢jj are selected in such a manner that

1 for =2 Xyj,

M () .
! {O for XEQhUFh -~ X
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we then obtain from Eq. (14) for f; at the point Xjij the same approximation as in Eq. (8).

Expression (14) plays the same important role in the finite element method, as does
Eq. (8) in the finite difference method, or expression (10) in the Galerkin method. In us-
ing Eq. (10) as a system of coordinate functions one usually selects either systems of trig-

onometric functions or polynomials, which must be determined in the whole region 2, and must
be sufficiently smooth. :

In using Eq. (14) one uses for $ij predominantly piecewise-continuous low-order poly-
nomials. In this case one often uses spline functions, nonvanishing only near Xij; they are
equal to unity at the point Xjj, while they vanish at all remaining grid points.

Choosing around the point Xij some neighborhood Uij consisting of four quadrilateral
elements from E, to E , (see Fig. la), we then obtain, for example for the function %14 of
some internal grid site X;;6Q. the following expression:

Fl)F2(x), x¢€ E,,
F]'% (x)F3(x), x€E,,
F3 (x) F} (x), x¢Ey,
Fl(x)F} (x), x€E,
0 xe€QUT — Uy

®y; (x)

—

These functions are also called shape functions. For these functions expression (14)
acquires, for example in the element E,, the following shape:

fr (6) = F(Xap) F}®) F2(0) + [ (Xoqas) F} (0) F2 0) + F KXo ) FY O FLLy (0 F (X F (1) Fiy (),

Here Fi1 (x) = — (g — Xqa40) 1 s FJQ- (%) = — (g — Xgjr) hosy FP(x) = (31— Xyi-1)/ Mg F}l (2) == (g — Xpj1)/Pas 1.

The method indicated can also be extended to elements of triangular shape. We select a neigh-
borhood Ujj of some point Xjj, consisting of 6 elements from E; to E; (see Fig. 1b). We then
obtain the following expression, for example, for the function ¢jj of some internal grid site
Xij and, consequently, of the corresponding triangular element:

(F1(x), X€E,, -
F]? %), XCE,,
F}(x)—F}(x),  x€Es,
() = {F? (9, x€E,
F (x), rEE,,
Ft(x) —F}(x), x€E,

{ 0 xeEQYUT —U;;.

For the thus selected shape function expression (14) acquires, for example, the following
shape in the element E;:

Kitjel Xije1 K b Xiju Xiut ot
‘ |
| £ & £ | & 3
Lt Xij Kist iy j Xij Xist |
£y £, E, &
X1 Xi j-1 Xiviv1 ks
Kiet ot Kijt

Fig. 1. Neighborhood Ui=EU.. UE. (a) and U;=EU.. UEs (b)
of the point Xjj.
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f1(0) = F(Xi) FY () -+ | (Kiaas) P2, (8) — FHOOT + [ i ) Fy (00

In the other elements we obtain similar expressions for fI(x).

For.the boundary sites X;&In we use the corresponding single-sided expressions for
@ij. This method can be generalized to arbitrarily located triangles, as well as curvilinea
Frlangula? elements [7]. In a more general approach and a choice of several grid points :
in Fhe triangle one requires a higher degree of smoothness of the coordinate function. The
choice of coordinate and weight functions is related to the specific features of the éroblem

to be solved. This also equally refers to thei
- . eir smoothness properties, as i-
mation equations and boundary conditions. proP ’ well as to approxt

6. ApProximaFion of Differential Equations. Similarly to the discussion above, we
also approximate differential operators. We introduce the notation: ’

F=FXu ta) [=FXip tasa)s

£2
F=F(Xiz1, 7, t) | =FXs, jz1 L)

Then using the Taylor equation at the i ig
tf point Xi4j and at the moment of ti i
the following approximations (app) [8, 91: ) fne tn. one can obtain

app () = f» app (Dif) = [y fi w8 [, s
*1

, app (D7) = Fizyp

- +1 +2 -
where fr = (FWftnws fro= (7 Ditas oo = (T = Vs Fos= = Pibaccss F = (= Dk Fo = 0.5y )
f};xl =2 (fxl-»—f-’_‘x)/(hli~l+h1i); f;gxz =2 (fxz _—fx_z)/(hﬂ—l —Ffl/’lzj), l &

The approximation errors are estimated by means of the values of grid parameters (8,
9], 1If the differential operator Dy is encountered as a cofactor in the product, one can

use the expressions [2, 10]
4!
app (v;D;w) == 0.5 (0w, -+ VW5);

+ ) —! 15
app (v, Dyw) = 0.25 [(v; + 9) Wy, T (1 + ) wg] (15)

or
app (v,Dw) = 0.5 [(v; — [o,]) s, + (0 + o)) wx—l].

1f the starting expressions, such as the convective terms vyDgvk, are nonlinear, then,
according to Eq. (15), the expressions approximating them will also be nonlinear. One can,
however, also introduce approximations for which linearization is simultaneously realized,

for example, app (veDgvk) = app (¥9Dyvk) .

Another possibility of avoiding nonlinearity consistsvof 3onlinear expressions being
approximated explicitly, for example, app (veDgvk) = app (J9DgVk), or an iteration approxima-
tion is realized of nonlinear terms:

app (v Dyos) = app (WD ,ox), 2pp (Do), app (©.Dvy)-
Here vy, and correspondingly ¥k, denote initial or approximate values, refined by the itera-
tion. ‘

In the numerical solution of nonstationary initial problems, the linearization method
app (veDgvk) = app (¥¢Dyvk) seems to be more advantageous,. since it leads to faster converg-
ence of the solution than for explicit approximations, and to higher stability of the com-
putational process in comparison with iteration methods.

1369



If, however, the analytic functions are approximated by replacing itieir sums of the
form (10) or (14), then the differential operators D = (D,, D,, D%, D3) can be applied dir-
ectly to the coordinate functions ¢w(x) or, respectively, to @pv(x), and be considered
at the point xjj, more precisely ’

app (D]c) ,ij = Dapp (f)IX;j Df/ [Xi' == ‘v ay, Dmpv(XzJ) or : /K(X,u.'v) D(Duv(Xi]')'
. V W, v

In this case, when these differential expressions must be approximated not at the dis-
crete points Xij, but expressed in terms of weighted means corresponding to Eq. (9):

app (Df) = Dfi = (Df, $:)/(1, i)y

while weight functions Yij may be augmented so as to approximate the differential expressions.
This approach within the Galerkin method and that of weighted residues (for example the fin-
ite element method), has recently acquired much interest.

7. Approximation of Problems with Tnitial and Boundary Conditions. The approximation
of problems with boundary and initial conditions can be conducted by various methods. With-
in the difference approximation, for example, we construct the following approximation {2,
10] for the system (1)-(3):

0Ty~ 85, +app (0DO) = [ + 0/t 1n D, (16)
Un/Tno1 = My, + 3PP (D) + P = 0O+ gn + Un/Tat in Qi (17)
lel—-OID Qur, —X* (18)
Here k = 1, 2; n=1, ..., N, and I''h denotes the points of the boundary Th, in which must

be determined the pressure value p, and X* is an arbitrary point at Q,Ul',, in which Eq.
(18) is not considered, since in the opposite case the system of equations will be linearly
dependent [2].

Since by Egqs. (16)-(18) the pressure p is determined accurately only within a constant
term, its value must be given at one arbitrary point X**€QUI''m. Without loss of generality
one can select as X*% a point on the boundary I'p and put X* = X¥*%,

For the approximation app (¥nge) and, correspondingly, app (shngk), one can use, for
example, approximation (15). Due to this linear approximation of the nonlinear convective
terms the system of equations (1)-(3) is decomposed into two parts, having only single-sided
coupling. More precisely, initially Eq. (16) is solved and 0 is determined, and then Egs.
(17) and (18) are used to determine v and p.

The initial and boundary conditions must also be approximated so as to solve these equa-
tions. So as not to have supplementary conditions for the points outside the grid QuUTs
to approximate the derivatives appearing in the boundary conditions one often uses one-sided
differences.

In approximating Egs. (1}-(3) one can achieve higher levels of accuracy than in Egs.
(16)-(18) [10]. For this the terms having alarge effect on the solution must be approxim-
ated with high accuracy. In the case of small « and n values, a decisive role is played
by the approximation of convective terms [11].

Similarly, by the difference approximations, Eqs. (4) and (5), we obtain

0/Ty_y — MO, -+ app (0Dw) = —“Rle ‘*‘ g, + g, + &/ Tnoys (19)
o = IP—:' ‘

*1%}
WQ%MMJnnWaﬁaf+@p@DN;%):—45%;F%%—gﬁi%wﬁﬁﬁ%y (20)

The approximation v = (D,¥, ~D,¥) can be realized in the form v =(¥,, —¥,) or v =
. Xz Xy

= (D,¥, —D,¥}. If on T'h one uses single-sided differences for calculating ¥ from the boundary
values of v, then one can determine ¥ from a segment of the boundary [h, consisting of the
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£1 &2
points TrUENTLUTL).  To calculate w on Qn and ¥ on Qh — Th, it is sufficient to consider the
first equation (19) at the point X}jegh~—fﬁ and the second equation (19) at the points
X €9, Equations (19) can be considered independently of each other. But then the re-
quired boundary values for w can only be calculated within the iteration approximation,
since w is related to & by the second Eq. (19).

It is sufficient to consider Eq. (20) at the points Xij = Qh — fh, and to determine ¥
on ['h from the boundary conditions for v. Equations (19) and (20) have the advantage that
the pressure p is eliminated in them and, therefore, they require substantially less computer
time than Eqs. (17) and (18).

Similarly one can make approximations to Eq. (7):

p;—x -+ ) = Ri e -+ g in Qh,
kTR uh ml X2 Ry (21)
app (Dyvp) = 0 in Ty

Here app (Dkvk) on Th is a one-sided difference approximation. Equation (21) can be solved

simultaneously with (17) instead of (18). For this are needed boundary conditions for the

pressure, which must be determined in such a manner that the operator app (Dkvk) vanish at

the boundary I'h. Therefore, in the system (17), (21) there is a connection between p and v
for the boundary values of p as well. 1In this statement, the problem with explicit approx-
imation of convective terms was solved numerically by means of the direct method [3].

In this case, starting from given boundary conditions for the pressure and Eq. (21),
the pressure was determined, and from Eq. (17) was found the velocity, with boundary condi-
tions for v. Since the velocity values thus obtained do not satisfy the second equation
(21), corrections were calculated for the pressure at the boundary Th, and the problem was
solved at the second step.

Along with the difference approximations described here for the equations of heat trans-
fer and of motion there exist many other approximations, obtained, for example, for different
grids for the unknown functions and explicit approximations for the equations of motions
[5], as well as in using splitting oriteration methods [12, 13]. The most effective among
them are implicit approximations, leading to a system of algebraic equations with tridiagon-
al matrices. To shorten the computation time and decrease the number of iteration steps
in the approximation equations one introduces iteration parameters, and methods of automatic
selection of their optimal values have been developed [12]. Often used is a methoed in which,
along with the approximation equations (2) and (3) one carries out their iterational self-
consistency [14-16]. In this approach one usually starts from known initial or approximate
values of the pressure p, which are substituted into Eq. (17), and v is determined from it.
The p value is then refined by means of the approximate relation

p: ;)’*-—‘()'v[xl.

This refinement process of the p value is repeated until satisfactory accuracy is reached.

Here ¢ is a small parameter, given in such a manner that the iteration process converges
[14].

To enhance the stability of the computational process one can introduce in the approxima-
tion equations wider grid patterns or use the predictor-corrector method. A simple method,
for which, in particular, there occurs smoothing of oscillations of the solution with respect
to the time coordinate, consists of that among the solutions at the two latter time planes
one constructs the weighted mean with weighting coefficient g (0 ¢ g £ 1): W =8W + (1 —

BIW, where W = (6, v,, v,, p, ¥, w) [17].

Similar systems of algebraic equations have also been obtained for finite-element ap-
proximation equations, as well as for Galerkin approximations. In using these methods the
derivative with respect to time is also replaced by a difference ratio, and the dependences
of the unknown functions on spatial coordinates are approximated on the time planes tn by
representations of the form:
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app (0) = 2 ZuvQopv,  APP (Up) = 2 UppyPrpve
TR

u, v

app (p) = 3, GusPruv

or B,V

app (6) = 2 e(Xuv) cbﬂpwv app (Uk) == E Ur, (Xuv) chu.v’
B, v u, v

app (p) = ¥ P (Xuv) Popw-
18

vV

Here zyjv, Ukyy, qHv are unknown coefficients, 9(Xuv), vk(Xuv), p(Xuv) are unknown reference
values, and Qepvs Pruvs Ppuv Popvs Pruwe Ppyy  is a known system of coordinate functions, depend-
ing on x. After substituting these representations into the original equations (1)-(3),

the latter are multiplied by appropriately selected weight functions ¥8ij, VkAij, and ¥pij,
and are integrated in the Q region. In this case, A acquires the values 1 and 2, the summa-
tion over k is carried out from 1 to 2, and i and j vary from 1 to I — 1 and J — 1, respec-
tively. 1In this case the systems of algebraic equations for the unknown coefficients and,
respectively for the reference values, are more complicated in comparison with those ob-
tained in using finite-difference methods. As a rule, they have matrices with a wider band.
To determine these matrices, the integrals must often be calculated numerically. In using
Galerkin methods, the further problem is generated of determining the coordinate and weight
functions occurring for complicated regions. The advantage of Galerkin methods consists of
their higher accuracy and of their more convenient application in mathematical studies of
the equations.

The advantage of the finite element method is its good adaptation to regions of complex
shape, as well as to complicated transfer processes. Also, in individual special cases it
can be simplified substantially. Thus, for example, if weight functions can be used possess-
ing the property $kiij = O on I' and Dkykiij = O on @, then due to (Dkp, ¥kAij) — (p, Dkykrij)=
0 one can eliminate the pressure from the equations of motion.

8. Solution of Systems of Linear Algebraic Equations. As was shown in the preceding
sections, there exist many methods of approximating the original equations of a system of
linear algebraic equations Ay = b. Here A = {apy} (y, v =1, ..., K) is a square matrix of
order K, and y = {yv} and b = {by} are unknown and known vectors. The system of equations
must be selected in such a manner that ayy # 0. In this case it can be solved directly or
by iterations. It must be noted that iteration methods usually require longer computation
time, while direct methods require more memory. The shape of the system of algebraic equa-
tions depends substantially on the approximation method. Using explicit [5], partially im-
plicit [14] difference schemes, or splitting methods [12, 13], we respectively obtain sys-
tems of equations, whose matrices have nonvanishing elements only in the main diagonal, or
reduce to tridiagonal form. Such systems of equations can be solved by known direct meth-
ods. When the matrix A or part of it is obtained by five-point approximations of the Laplace
operator, for direct solution of this system one can use the method of cyclic reduction [18],
the method of fast Fourier transforms [19], or the stable itinerary method of error minimiza-
tion [20]. Their advantages and disadvantages have been investigated in detail in [21].

For direct solution of an arbitrary system of linear algebraic equations one can use,
in principle, the Gauss method. For economic matrix arrangement in a computer, however,
it is ineffective. Therefore, more effective special methods of solution [7] have been de-
veloped for strip matrices. The LU-factorization method is well recommended for arbit-
rarily weakly filled matrices, in which case the problem reduces to sequential solution of
two systems of equations with upper and lower triangular matrices.

Among the simplest iteration methods are the Jacobi method
~ K ~
Tup (.l/u - yu) = bu - E Auvlv
V=]

and the Gauss—Seidel method
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Here yy is the unknown solution, and yy is its known initial approximation.

After y,, has been determined, it can be substituted for §v’ and the calculation can
be repeated until satisfactory accuracy has been reached [22]. For a suitable choice of
the iteration parameter ¢ one can use a more effective point relaxation method [22]

au,u (!/u - 57LL) =0 (bu — é auv;v)

v=1]

or a quickly convergent implicit relaxation method [23], for which a dominating submatrix
C = {cpv} is separated from the algebraic equations, and the iteration process is construct-
ed as follows:

K C
}:‘ Cuy (yv - !;x) =0 (bu'“ i auvgv)-

V== | V=

In this case, C is selected in such a manner that it is easily inverted. At each iteration
step one can then use direct solution methods. If C has a tridiagonal shape, one can usual-
ly apply a dismissal method, and if C is a Laplace operator, approximated by a five-point
pattern, iteration methods are used.

A different, more general method of solving systems of algebraic equations on the basis
of an implicit iteration process consists of an incomplete LU-factorization of the matrix
A. In this case, C is represented in the form of a product of lower and upper triangular
matrices in such a manner that the error [[A—C| be possibly small, and that the factors
of the product C occupy lease computer memory space. The choice of the solution method de-
pends on the structure and value of the original system of equations. For transport prob-
lems of heat, momentum, and mass in a two-dimensional system, and for a not too large num-
ber of equilibrium grid sites, it is recommended to use LU-factorization methods and fully
implicit approximations of the original equations. These are well recommended both for heat-
transfer equations [24], and for the Navier—Stokes [11] and Boussinesq [17] equations. In
this case one uses special programming packages [25], containing a large number of subpro-
grams which can be applied to different variants of the solution.

Since for the statements of nonstationary problems considered here all equations at
all time layers always have an identical structure, it seemed possible to use for their solu-
tion a single program consisting of three parts. The first part leads to symbolic factor-
ization, which for a large number of equations having identical structure can be satisfied
only once. The second carries out the numerical factorization, and solves the system of
equations. And, finally, the third part is a program for obtaining partial solutions, which
is always used if the matrix is represented in the form of a product of lower and upper mat-
rices.

Thus, if it is necessary to solve a large number of systems of equations, whose mat-
rices remain invariant with only the right-hand sides changing, the first two parts of the
program are used only for the first system. To decrease the required bulk of computer mem-
ory and enhance the stability of the calculation, there exists a program in the package which
undertakes an advisable matrix redistribution ahead of its factorization.

To solve the heat-transfer equation (16) in a rectangular region on a 33 x 33 grid,
one needs 15 sec on an ES1055 computer. If the matrix remains unchanged, but only the bound-
ary conditions and the right-hand sides of Eq. (16) change, and the heat-conduction coeffi-
cient k and velocity v are independent of time t, then to solve it at the second and each
further time step one requires only 0.8 sec of computer time. If, however, the matrix ele-
ments vary from one time step to another, while the structure of the matrix is retained,
then to calculate the matrix and the right-hand sides and solve the equations at the second
and each further time step one requires 8§ sec.
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In solving the Navier—Stokes equation applied to fliow in a rectangular band {a 25 x 25
grid), the ¥-representation (20) was selected. The computation time at each time layer was
14.2 sec for the second and each subsequent time step. The total memory bulk of the program
was 300 kbytes. Along with the solution of the Navier—Stokes equation in the ¥Y-representa-
tion we also verified the w¥-representation (19) and the vp-representation (17) and (18).
This verification has shown that the w¥-representation approximately agrees with the ¥-rep-
resentation both in computation time and in the bulk of memory required. For the numerical
solution of the Navier—Stokes equation in the vp-representation the computation time and
the bulk of memory required increased by approximately 4 times.

These methods were also used in solving the Boussinesq equation for numerical studies
of free-convective flows in rectangular shape regions. In this case we used equations of
motion in the ¥Y-representation, and considered a 17 x 17 grid. For direct solution of the
linearized Boussinesq equations at the second and each subsequent time layer, the computa-
tion machine time was 4.5 sec. The total length of the program was 162 kbytes.

To decrease the approximation error, for large Reynolds numbers it is required to use
a very fine grid. This leads for a full LU-factorization matrix to the necessity of using
a large memory, which sometimes exceeds the present computational possibilities. Due to
the development of many-point methods, one can develop effective methods even for large sys-
tems of equations. It was also used for solving the Navier—Stokes and Boussinesq equations
[6], and consists of the fact that in solving the equations on crude grids one uses direct
methods, while on fine ones one uses iteration or smoothing methods, requiring less memory.
These multipoint methods lead for a time layer tp and grid space QM to a system of algebraic
equations of the shape AWM = bW, u = 1, ..., M. For the nonlinearized approximation of
the original equations the matrix A® also depends on y®, i.e., AM™ = AM(y). The many-point
methods can be used in different shapes [6].

One of the solution methods of the nonlinear nonstationary systems of equations [26]
consists of the fact that for some time layer tp one starts from a known approximate solu-
tion yM on the grid @M, and calculates an initial solution pt= /L7 on the grid Q. Here
one introduces the transition operator [ from the grid Q™ to the grid Q™ . This is
an identification, prolongation, or restriction operator, respectively, for m; = m,, m, > m;
or my, < my. At the first stage of the n-th time layer yM one can determine the extrapola-
tion solution at the preceding time layer [26] and find the error RM = pM — AM(y)yM on oM.
By further restricting the step, one determines the error projection R = I™RY on o0 (m =
M—-1, ..., 1) and the approximate solution yM is iteratively improved by solving the system
of equations

Am(gyym=H™, m=1, ..., M, (22)
where H" = A" (§) " +R" y* = Luy™, " = L"+ a7 =1y, m =2, .., M.
The solution obtained for m = M is used following the new approximation § = yM, and

the process is repeated until satisfactory accuracy (smoothness) is reached. Instead of
the approximate solution obtained on a fine grid, one can also start from any solution ob-
tained on a crude grid, and select different M values at separate time layers.

In the case of approximation (20), Eq. (22) for m = 1 was solved by the direct method
by means of the LU-factorization matrix [27] A,(y)y® = H'. On the fine grids Qm (m > 1) we
used Jacobi and Gauss—Seidel relaxations, as well as an incomplete LU-factorization matrix
with a damping factor o, i.e., for some constant m > 1 we use for the smoothed solution ym
the following iteration process:

Cm(ym —§m) = o LH™ — Am(5) ™). (23)

At.the first iteration step we took §m==b"l , and at the further iteration steps ﬁﬁ was
replaced by the solution ym of Eq. (23).

In the case of Jacobi relaxation the nonvanishing elements of the matrix C™ coincided
with the principal diagonal of the matrix Am(j). In the case of Gauss—Seidel relaxation
the lower triangular matrix and the principal diagonal of the matrix C™ coincided, respective-
ly, with the lower triangular matrix and the principal diagonal of the matrix Am(j) in
the form of a product, whose lower and upper triangular matrices have a nonvanishing struc-
ture, as well as Am(7){6].This smoothing method was verified both with a constant parameter
0, approximately equal to unity, and with a dynamically controlled parameter ¢. This param-
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eter was controlled in such a manner that the norm of the new error equation (23) be small-
er than the norm of the error obtained for y™. In solving the Navier—Stokes equation (2)

by the method indicated for a Reynolds number Re = 5000 in the case of flow in a closed rect-
angular band, we used three grids: 19 x 19, 35 x 35, and 67 x 67. The parameter ¢ was sel-
ected to be constant. In this case we observed in the transition from one grid to another
the appearance of disturbances leading to instabilities of the computational process with

an enhanced time step.

For dynamic selection of the iteration parameter ¢ we obtained for it relatively small
values, leading to an insignificant change in the linearly interpolated solutions obtained
for crude grids.

This behavior of the equations for the many-grid approximations is, obviously, related
to their sensitivity to disturbances due to the selection of the approximation method of
the Navier—Stokes equations and their boundary conditions. Since the boundary values for
¥m on M — T™M are proportional to the value of the grid step for ¥ = 0 on I'™M, a change in
the latter leads to a change in them and, consequently, to a change of ¥® on oM,

9. Conclusion. To solve special classes of stationary and nonstationary two-dimension-
al problems of momentum, heat, and mass transfer, we developed various packages of applied
programs which, after the introduction of specific data, corresponding to a specific state-
ment of the problem, and the development of their program provide its numerical solution.

The use of fully implicit approximation methods and of direct solution of the linearized
equations provides the possibility of developing effective numerical algorithms, making it
possible to obtain the solution in a wide region of Reynolds and Rayleigh numbers.

These methods can also be used for numerical investigation of transport processes in
turbulent flows and in rheological media. In principle, they can be generalized to solving
three-dimensional problems. In this case, however, for a small value of the grid step the
number of equations becomes very large, and high-power computers are needed to realize these
methods.
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